Recommended Practice for the Pressure Testing of Steel Pipelines for the Transportation of Gas, Petroleum Gas, Hazardous Liquids, Highly Volatile Liquids, or Carbon Dioxide

API RECOMMENDED PRACTICE 1110
SIXTH EDITION, FEBRUARY 2013

REAFFIRMED, AUGUST 2018
Special Notes

API publications necessarily address problems of a general nature. With respect to particular circumstances, local, state, and federal laws and regulations should be reviewed.

Neither API nor any of API's employees, subcontractors, consultants, committees, or other assignees make any warranty or representation, either express or implied, with respect to the accuracy, completeness, or usefulness of the information contained herein, or assume any liability or responsibility for any use, or the results of such use, of any information or process disclosed in this publication. Neither API nor any of API's employees, subcontractors, consultants, or other assignees represent that use of this publication would not infringe upon privately owned rights.

API publications may be used by anyone desiring to do so. Every effort has been made by the Institute to assure the accuracy and reliability of the data contained in them; however, the Institute makes no representation, warranty, or guarantee in connection with this publication and hereby expressly disclaims any liability or responsibility for loss or damage resulting from its use or for the violation of any authorities having jurisdiction with which this publication may conflict.

API publications are published to facilitate the broad availability of proven, sound engineering and operating practices. These publications are not intended to obviate the need for applying sound engineering judgment regarding when and where these publications should be utilized. The formulation and publication of API publications is not intended in any way to inhibit anyone from using any other practices.

Any manufacturer marking equipment or materials in conformance with the marking requirements of an API standard is solely responsible for complying with all the applicable requirements of that standard. API does not represent, warrant, or guarantee that such products do in fact conform to the applicable API standard.

Classified areas may vary depending on the location, conditions, equipment, and substances involved in any given situation. Users of this Recommended Practice should consult with the appropriate authorities having jurisdiction.

Users of this Recommended Practice should not rely exclusively on the information contained in this document. Sound business, scientific, engineering, and safety judgment should be used in employing the information contained herein.
Foreword

Nothing contained in any API publication is to be construed as granting any right, by implication or otherwise, for the manufacture, sale, or use of any method, apparatus, or product covered by letters patent. Neither should anything contained in the publication be construed as insuring anyone against liability for infringement of letters patent.

Shall: As used in a standard, “shall” denotes a minimum requirement in order to conform to the specification.

Should: As used in a standard, “should” denotes a recommendation or that which is advised but not required in order to conform to the specification.

This document was produced under API standardization procedures that ensure appropriate notification and participation in the developmental process and is designated as an API standard. Questions concerning the interpretation of the content of this publication or comments and questions concerning the procedures under which this publication was developed should be directed in writing to the Director of Standards, American Petroleum Institute, 1220 L Street, NW, Washington, DC 20005. Requests for permission to reproduce or translate all or any part of the material published herein should also be addressed to the director.

Generally, API standards are reviewed and revised, reaffirmed, or withdrawn at least every five years. A one-time extension of up to two years may be added to this review cycle. Status of the publication can be ascertained from the API Standards Department, telephone (202) 682-8000. A catalog of API publications and materials is published annually by API, 1220 L Street, NW, Washington, DC 20005.

Suggested revisions are invited and should be submitted to the Standards Department, API, 1220 L Street, NW, Washington, DC 20005, standards@api.org.
Contents

1. **Scope** ... 1
2. **Normative References** ... 1
3. **Terms, Definitions, and Abbreviations** .. 1
 3.1 Terms and Definitions .. 1
 3.2 Abbreviations ... 5
4. **Pressure Test Planning Process** .. 5
 4.1 Guidelines for Planning a Pressure Test .. 5
 4.2 Pressure Test Medium .. 11
 4.3 Pressure Test Equipment and Materials ... 12
 4.4 Location and Use of Test Measuring Equipment .. 14
5. **Pressure Test Implementation** ... 15
 5.1 General .. 15
 5.2 Qualification of Contractor and Operator Personnel ... 15
 5.3 Line Fill and Cleaning .. 15
 5.4 Initial Pressurization .. 17
 5.5 The Test Period .. 18
 5.6 Pressure Test Failures ... 19
 5.7 Searching for Leaks .. 19
 5.8 Pressure Test Acceptance Criteria ... 20
 5.9 Depressurization, Displacement, and Disposal of the Test Medium 21
 5.10 Drying Operations ... 22
6. **Pressure Test Records and Drawings** ... 22
 6.1 General .. 22
 6.2 Pressure Test Records .. 22
 6.3 Pressure Test Drawings .. 24

Bibliography ... 25

Figures
1. Impact of Test Pressure on Margin of Safety ... 10
2. Pressure–Volume Plot with Residual Air ... 17
Introduction

This recommended practice (RP) provides guidelines for pressure testing steel pipelines for the transportation of gas, petroleum gas, hazardous liquids, highly volatile liquids, or carbon dioxide. The RP provides guidance so that:

a) pipeline operators can select a pressure test suitable for the conditions under which the test will be conducted—this includes, but is not limited to, pipeline material characteristics, pipeline operating conditions, and various types of anomalies or other risk factors that may be present;

b) pressure tests are planned in order to meet the overall objectives of the pressure test;

c) site-specific procedures are developed and followed during all phases of the pressure testing process;

d) pressure tests consider both personnel safety and environmental impacts;

e) pressure tests are implemented by qualified personnel;

f) pressure tests are conducted in order to meet stated acceptance criteria and pressure test objectives;

g) pressure test records are developed, completed, and retained for the useful life of the facility.

Users of this RP should be aware that further or differing requirements may be necessary for some applications. Nothing in this RP is intended to inhibit the use of engineering solutions that are not covered by the RP. This may be particularly applicable where there is innovative developing technology. Where an alternative is offered, the RP may be used, provided any and all variations from the RP are identified and documented.

The guiding principles of this RP as follows.

a) This RP provides a consistent means of preparing, assessing, using, and verifying pressure test results in order to help insure that the objectives of the pressure test are met. It also provides guidance for meeting the requirements of Integrity Management as stated in API 1160 and ASME B31.8S.

b) This RP is not technology specific. It accommodates present and future technologies used for pressure testing steel pipelines.

c) This RP is performance-based and provides guidelines for the qualification of the pressure testing processes. It does not, however, define how to meet those guidelines.

d) This RP provides guidelines for documenting important information during each phase of the pressure testing process.

e) Wherever possible, this RP utilizes existing terms and definitions from other applicable industry documents. Definitions of terms used in this RP are listed in Section 3.

f) The use of a pressure testing process to manage the integrity of pipelines requires an appropriate amount of interaction between the provider of the inspection service (service provider), if one is used, and the beneficiary of the service (operator). This RP provides guidelines that will enable service providers and operators to clearly define the areas of cooperation required and thus facilitate the satisfactory outcome of the pressure testing process.

Although many operators use service providers during various phases of the pressure testing process, it is important to note that the operator is ultimately responsible for:

a) identifying specific risks (threats) to be assessed as part of the pressure testing process,

b) choosing the proper pressure test in order to assess identified risks (threats), and

c) confirming and verifying pressure test results.
1 Scope

This RP applies to all parts of a pipeline or pipeline facility including line pipe, pump station piping, terminal piping, compressor station piping, metering station piping, delivery station piping, regulator station piping, appurtenances connected to line pipe, appurtenances connected to facility piping, fabricated assemblies, valves, tees, elbows, reducers, flanges, and any other pipeline equipment or appurtenances.

This RP does not apply to pumping units, compressor units, breakout tanks, pressure vessels, control piping, sample piping, instrument piping/tubing, or any component or piping system for which other codes specify pressure testing requirements (i.e. ASME Boiler and Pressure Vessel Code, piping systems covered by building codes, etc.).

Although this RP contains guidelines that are based on sound engineering judgment, it is important to note that certain governmental requirements may differ from the guidelines presented in this document.

This RP does not address piping systems that are pressure tested with natural gas, nitrogen, or air.

2 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

API Standard 1160, Managing System Integrity for Hazardous Liquid Pipelines
ASME B31.4 1, Pipeline Transportation Systems for Liquid Hydrocarbons and Other Liquids
ASME B31.8:2007, Gas Transmission and Distribution Piping Systems
ASME B31.8S, Managing System Integrity of Gas Pipelines

3 Terms, Definitions, and Abbreviations

3.1 Terms and Definitions

For the purposes of this document, the following definitions apply.

3.1.1 anomaly
A deviation from the norm in pipe material, coatings, or welds.

3.1.2 appurtenance
A component attached to the pipeline (e.g. valve, tee, instrument connection, supports, anchors, etc.).

3.1.3 bend
A physical configuration that changes pipeline direction.

3.1.4
carbon dioxide
A fluid consisting of more than 90% carbon dioxide molecules compressed to a supercritical state.

3.1.5
certification
A written testimony of qualification.

3.1.6
characteristic
Any physical descriptor of a pipeline or an anomaly, such as length, depth, shape, severity, orientation, and location.

3.1.7
component
Any physical part of the pipeline, other than line pipe, including but not limited to valves, welds, tees, flanges, fittings, taps, branch connections, and outlets.

3.1.8
corrosion
The deterioration of a material, usually a metal, that results from a reaction with its environment.

3.1.9
crack
A very narrow elongated separation caused by mechanical splitting.

3.1.10
deadweight tester
An instrument consisting of a finely machined piston mounted vertically in a close-fitting cylinder used for maintaining a calculable pressure; also known as a "piston gauge."

NOTE When fitted with a means of pressure control, additional pressure ports, masses etc., the complete system is commonly known as a "deadweight tester."

3.1.11
examination
A direct physical inspection of an anomaly by a person, which may include the use of nondestructive examination techniques.

3.1.12
feature
Any physical object detected by an in-line inspection device.

NOTE Features may be anomalies, components, nearby metallic objects, or some other item.

3.1.13
freeze plug
A pipeline isolation point created by freezing hydrostatic test water inside the pipeline by the application of liquid nitrogen to the outer surface of the pipe.

NOTE Normally used to separate a test section into smaller test segments in order to identify leaks more readily or used to establish a test boundary.

3.1.14
gas
Natural gas, flammable gas, or gas that is toxic or corrosive.
3.1.15
gouge
Elongated grooves or cavities caused by mechanical removal of metal.

3.1.16
hazardous liquid
Petroleum, petroleum products, or anhydrous ammonia.

3.1.17
highly volatile liquid
A hazardous liquid that forms a vapor cloud when released to the atmosphere and has a vapor pressure exceeding 40 psia (276 kPa) at 100 °F (37.8 °C).

3.1.18
inspection
The use of a nondestructive testing technique.

3.1.19
leak test
A pipeline test designed to determine the presence or absence of leaks in a pipeline system.

NOTE A leak test can be used alone or in addition to a spike pressure test and/or a strength pressure test as required by the pressure testing plan.

3.1.20
nondestructive testing
A process that involves the inspection, testing, or evaluation of materials, components, and assemblies for materials’ discontinuities, properties, and machine problems without further impairing or destroying the part’s serviceability.

3.1.21
operating pressure
The actual steady state pressure at a discrete point within a pipeline system at a specific time.

3.1.22
operating pressure limit
A generic term used to describe the upper end of the operating pressure range of a pipeline.

NOTE In international codes and standards, it is often referred to as the maximum steady state operating pressure or maximum allowable operating pressure.

3.1.23
operator
A person or organization that operates pipeline facilities.

3.1.24
petroleum
Crude oil, condensate, natural gasoline, natural gas liquids, and liquefied petroleum gas.

3.1.25
petroleum gas
Propane, propylene, butane (normal butane or isobutanes), and butylenes (including isomers), or mixtures composed predominantly of these gases, having a vapor pressure not exceeding 208 psig (1434 kPa) at 100 °F (37.8 °C).

3.1.26
petroleum products
Flammable, toxic, or corrosive products obtained from distilling and processing of crude oil, unfinished oils, natural gas liquids, blend stocks, and other miscellaneous hydrocarbon compounds.
3.1.27
pipeline
A continuous part of a pipeline facility used to transport a gas, petroleum gas, hazardous liquids, highly volatile liquids, or carbon dioxide, which includes pipe, valves, and other appurtenances attached to pipe.

3.1.28
pipeline system
All portions of the physical facilities through which gas, petroleum gas, hazardous liquids, highly volatile liquids, or carbon dioxide moves during transportation.

NOTE This includes pipe, valves, and other appurtenances attached to the pipe, compressor units, pumping units, metering stations, regulator stations, delivery stations, breakout tanks, holders, and other fabricated assemblies.

3.1.29
pressure reversal
A phenomenon whereby a pipeline segments fails at progressively lower test pressures during subsequent pressure tests.

3.1.30
qualification (personnel)
The process of demonstrating skill and knowledge, along with documented training and experience required for personnel to properly perform the duties of a specific job.

3.1.31
seam
The longitudinal or spiral weld in fabricated line pipe.

3.1.32
service provider
Any organization or individual providing services to operators.

3.1.33
specified minimum yield strength
SMYS
The minimum yield strength prescribed by the specification under which pipe and fittings are purchased from the manufacturer.

3.1.34
spike pressure test:
A pressure test of short duration (typically less than 1 hour) and high amplitude (test pressure ratio typically greater than 1.25).

3.1.35
strength pressure test
A pressure test designed to establish the operating pressure limit of a pipeline as required by code or regulation.

3.1.36
stress
Tensile, shear, or compressive force per unit area.